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1. Vertical Circles

Problem: Choose the velocity at the bottom of a vertical circle (radius R, no drag
or friction) so that an object does not fall out at the top; or if it is
assumed that it stays in the circle, avoid requiring strange occurrences
such as a negative normal forces (“sticky” surface forces), or a push
(compression rather than tension) from a rope.

What to do: Choose a velocity equal to or greater than: . . . . . . . . 5Rg

or in MKS units on Earth, approximately equal to or greater than: . . . . . 7 R

Example: For a vertical circle on Earth, radius 2.0 meters, choose a velocity at equal to or greater than: m/s — roughly 7 2 0.
9.9 m/s.



2. Springs

Problem: For a mass, m, attached to a vertical spring at equilibrium and released
from rest on Earth (no damping, no friction), choose a spring constant
k in MKS units so that the extension remains less than 1 meter.  

What to do: Keep the ratio k : m equal to or greater than: . . . . . . . 20:1

Example: To a vertical ideal spring at equilibrium is attached a 5-kg mass, which is then released from rest.  To keep the extension
of the spring less than 1 meter, choose a spring constant at least equal to (20) * (5) , or 100 N/m.  

 
Problem: For a mass, m, on a surface approaching a horizontal spring at an

initial velocity v (no damping, no friction), choose a spring constant k
in MKS units so that the spring compression does not exceed 1 meter. 

What to do: Keep the ratio of k : mv2 equal to or greater than: . . . . . . . 1:1

Example: A 3-kg mass on a frictionless surface is approaching an ideal spring at 5 m/s.  Choose a spring constant at least equal to
(3)*(5)2, or 75 N/m.



3. Projectile Motion

Problem: Given the desired maximum height YMAX and range R of a projectile
launched from and landing at the same height (neglecting air
resistance), find the initial launch speed v and angle θ. 

What to do: Choose a range and a max. height, then calculate the launch angle . . = tanθ
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Then solve for the launch speed . . . . . . v  =  , or   
Rg

sin 2θ
2

2
gYMAX

sin θ

Note that the equation of the parabolic trajectory is . . . . – y Y
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Some of the relationships are neatly 
captured in this diagram:



4. Perfectly Elastic Collisions in One Dimension

Problem: Choose velocities and masses for two objects so that a linear collision
between the two is perfectly elastic.

     BEFORE:

     AFTER:

What to do: Choose two pairs of velocities that have the same sum;
Each pair will be the initial and final velocity of one 
object . . . . . . . . . . . v v v v1i if 2i 2f +   =   +  

Then choose masses that satisfy the ratio . . . . . .
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Caution: Choose initial and final values so that if one has a positive change in velocity, the other has a negative change.  Also,
avoid having the same initial and final velocity for an object, unless you intend that object to be infinitely more massive
than the other.

Example: Choose initial and final velocity pairs such as {3, 4} and { – 9, 2}, which both have the same sum (seven, in this case). 
If we let v1i = 3, and v1f = 4, we have a positive change in velocity of 1.  Therefore, we must have a negative change of
velocity for the other object; so let v2i = 2, and v2f =  – 9, which is a change of – 11.   The mass ratio m2 / m1  must then
be  – (1 / – 11), or 1/11.   So choose, say, m2 = 2 kg, and m1 = 22 kg.  



5. Perfectly Elastic Collision in Two Dimensions (Billiard Problem)

Problem: Choose initial and final speeds and angles for an elastic collision in two
dimensions (one object initially at rest), without either overdetermining
or underdetermining the problem.  Variables:  v1i , vif , v2f , n (the ratio
of the masses, θ1 , and θ2 .

What to do: Select numbers which form the sides of the right triangle. 
These sides will be the magnitude of the sides of the right
triangle ABC: v1i , vif and v2f / /n .  Select a mass- ratio n
; this ratio now determines v2f.  The law of sines or
cosines for triangle ABD determines the angles θ1 and θ2

  
 Caution: Actually, any three of the variables mentioned could be

chosen first and the geometry of the situations could be
used to determine the rest, EXCEPT: do not arbitrarily
choose the mass-ratio n , θ1 , and θ2 — they are interrelated:

tanθ1 = sin2θ2 /(2sin2θ2 + n - 1) .

Example: Let us use a 3-4-5 triangle for our right triangle.  The
hypotenuse, 5, must be v1i, but we are free to let v1f be 3 or
4; we choose v1f = 3.  This leaves v2f / /n equal to 4.  We
now arbitrarily choose the mass-ratio n to be 2.  Thus v2f
must be 4/2.  





Correction to the crossed out equation: 
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6. Parallel Circuits Problems

Problem: Choose values for resistances in a parallel circuit that yield an
equivalent resistance which is a whole number.  

What to do for 
two resistors: Choose a ratio between the resistors . . . . . . . . . a : b

The ratio will work for multiples of 
the sum of the ratio numbers . . . . . . . . . (a + b), or

2 (a + b), or
3 (a + b), or
etc.

Example: Choose a ratio between the two resistors, such as 2:3.  This ratio will work for multiples of (2 + 3), which is 5 — the
ratio will work for multiples of 5.  So you could choose sets of resistances: {10,15}, or {20, 30}, or {30, 45}, etc.

What to do for 
three or more 
resistors: Choose a ratio for the resistances . . . . . . . a : b : c

For n resistances, sum up all the combinations of them 
taken (n – 1) at a time (there will be n terms to add up) . . . . bc + ac + ab

The ratio will work for multiples of this sum . . . . . . (bc + ac + ab), or
2(bc + ac + ab), or
3(bc + ac + ab), or
etc.

Example: Let us choose, say, a ratio of 1:2:3:4 for the resistances.  This ratio will yield a whole number equivalent resistance for
multiples of (2)(3)(4) + (1)(3)(4) + (1)(2)(4) + (1)(2)(3), which is 50.  Therefore, the ratio will work for multiples of 50. 
So, you could choose sets of resistances: {50, 100, 150, 200}; or {100, 200, 300, 400}; etc.  


