Springs and Pendula

The Spring The Torsion Pendulum The Simple Pendulum The Physical Pendulum Example Problems Damping & Resonance

A quick word on our method:

$$x(t) = x_{\max} \cos(\omega t + \phi)$$

You may remember: $v(t) = -\omega x_{max} \sin(\omega t + \phi)$

$$a(t) = -\omega^2 x_{\max} \cos(\omega t + \phi)^{k}$$

Which lead to the realization that: $a = -\omega^2 x$

For each oscillator, we will start with Newton's 2nd Law and try to bring it into the form $a = -\omega^2 x$ so that we can deduce what ω is in terms of the physical characteristics of the oscillator.

EX4 Torsion Pendulum When pulled back to an angle of 1 radian, the period of the torsion pendulum is 0.6 s. The bottom is a disk with mass 1 kg and radius 10 cm. Find the torsion constant. T=2m/T $=4\pi^2$ Ind Mr $= \frac{1}{2} (1 \text{ b}) (0.1 \text{ m})^{2}$ = 0.005 kgm² 411 I K = $= 4\pi^{2}(0.005)$ = 0.548 ml nd

Forced Vibration = one vibrating object causes another to vibrate

Resonance = Forced vibration at an object's natural frequency.

