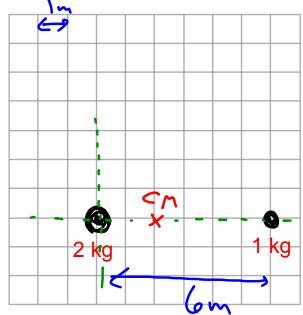
SYSTEMS OF PARTICLES AND MOMENTUM

- 1. Center of mass: particles and objects
- 2. Another view of systems
- 3. Isolated Systems
- 4. From Newton's 2nd Law to Impulse & Change in momentum
- 5. Impulse-Momentum vs Work-Kinetic Energy

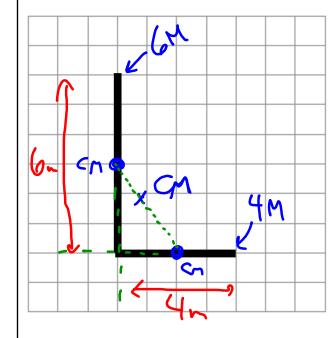

SYSTEMS OF PARTICLES AND CM

Center of mass = the average position of all the pieces of mass in the system

$$X_{cm} = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3 + \dots}{M_{total}}$$

$$\int_{CM} = \frac{M_1 y_1 + M_2 y_2 + \cdots}{M_{DMD}}$$

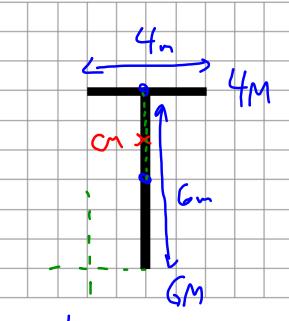
1-D CM Find the center of mass of the system


(each block is 1 m x 1 m)

$$= \frac{(2 \, \text{hz})(0) + (1 \, \text{hz})(6 \, \text{m})}{3 \, \text{hz}}$$

$$= \frac{(e \, \text{hzm})(0) + (2 \, \text{hz})(6 \, \text{m})}{3 \, \text{hz}}$$

2-D CM Find the center of mass of the system (2)(0) + (1)(0) + (1)(4) =

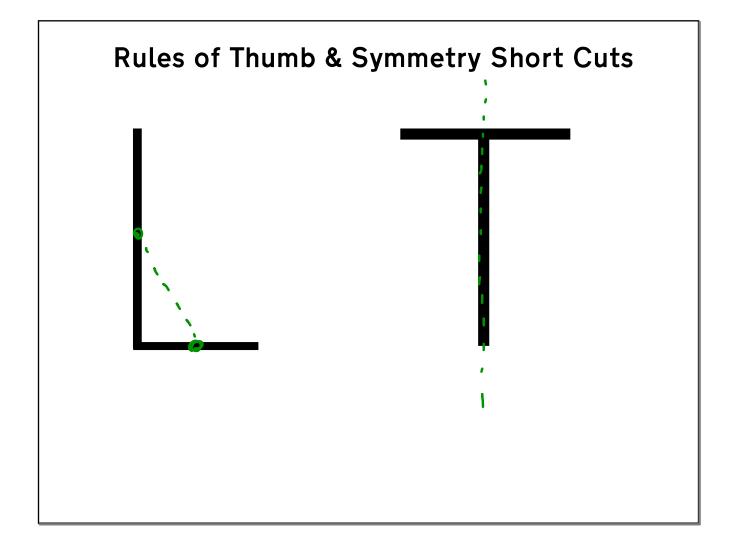

2-D CM Find the center of mass of the system

Let
$$M = mass of a lm$$

 $= (GM)(O) + (4M)(2)$

$$= (Gn)(3) + (4m)(0) = 18m = (1.8m)$$
10n

2-D CM Find the center of mass of the system



The "T" has uniform density

$$= \frac{(4m)(2)}{(0n)} + \frac{(2)}{(2)}$$

$$= \frac{(4m)(2)}{(0n)} + \frac{(2n)}{(2n)}$$

$$= \frac{8n+12m}{10m} = \frac{20n}{10n} \cdot \frac{2n}{10n}$$

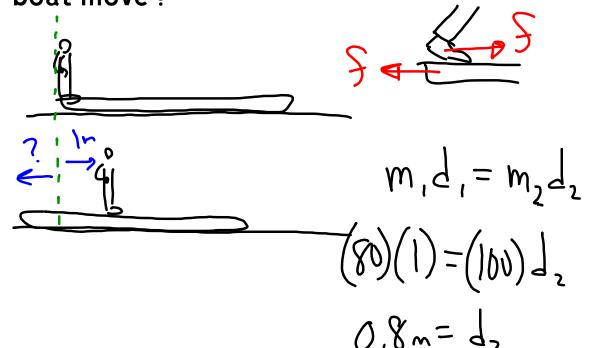
ANOTHER VIEW OF SYSTEMS

$$M_{total}X_{cm} = m_1x_1 + m_2x_2 + m_3x_3 + \dots$$

$$\frac{d}{dt}(M_{t} n X_{c}) = \frac{d}{dt}(M_{1} X_{1} + M_{2} X_{2} + \cdots)$$

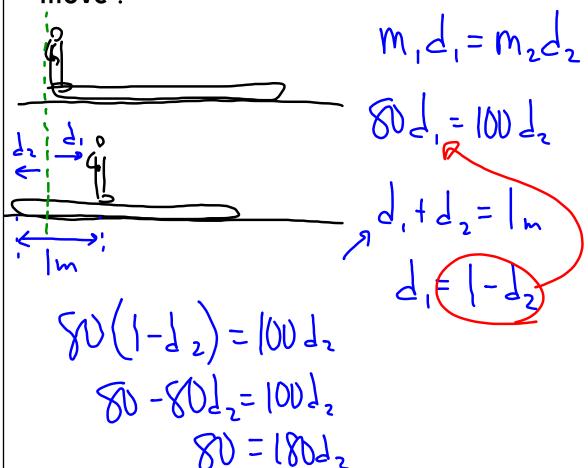
$$M_{max} A_{cn} = m_1 a_1 + m_2 a_2 + \cdots$$

In an isolated system....

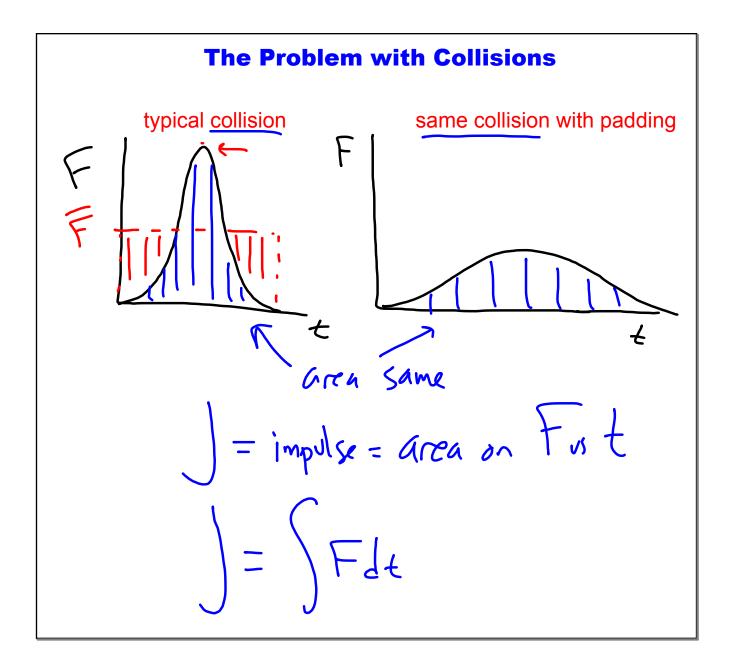

$$\sum_{n} F_{ext} = 0$$

$$M_{total}A_{cm} = 0 \longrightarrow M_{total}V_{cm} = \text{constant}$$

$$M_{total}V_{cm} = 0 \longrightarrow M_{total}X_{cm} = \text{constant}$$


Isolated Systems

The 80 kg person is at the end of the 100 kg boat. If the person moves 1 m to the right (relative to the water), how far back did the boat move?



Isolated Systems

The 80 kg person is at the end of the 100 kg boat. If the person moves 1 m to the right (relative to the boat) how back did the boat move?

6.44 n= da

Another look at Newton's 2nd Law

$$\sum F = ma$$

$$F = m \frac{1}{dt}$$

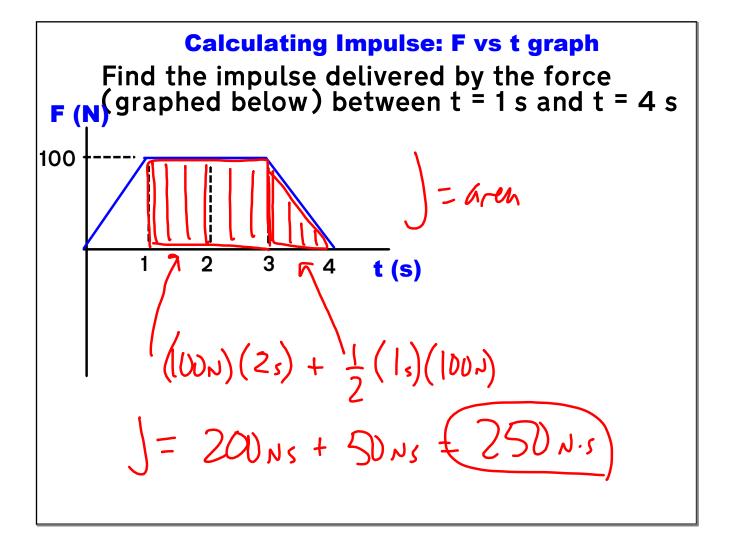
$$F = m \frac{1}$$

Impulse and Change in Momentum

Impulse (in Ns) and change in momentum (in kgm/s) calculate the same number

 $J = \overline{F}\Delta t$

$$J = \Delta p$$


$$J = \int F dt$$
 $J = \text{area under F vs t graph}$

Calculating Impulse: Constant F

Find the impulse delivered by a constant 200 N force that acts for 0.1 seconds.

$$\int = F_{0t} = (200 n)(0.1 s)$$
= 20 N.s

M = 50/222

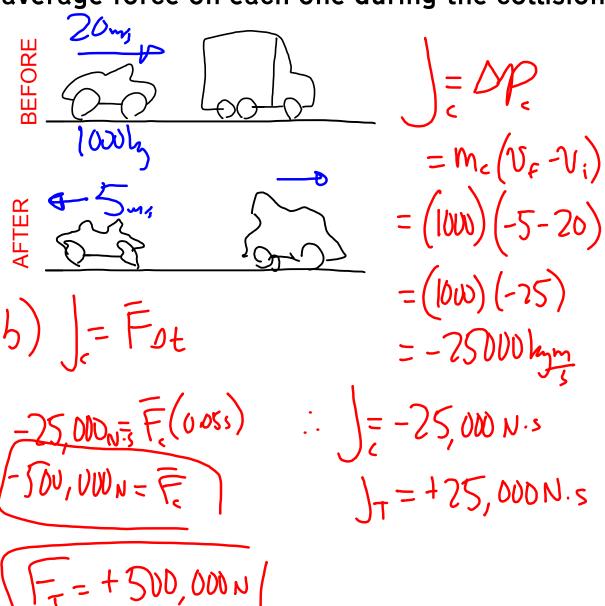
Calculating Impulse: F as a function of t

Find the impulse delivered by the force F = (4t - 3) N from t = 1 s to t = 2 s

$$\int = \int F_{dt} = \int (4t-3) dt$$

$$= \left[\frac{2}{4t^2-3t} \right]^2$$

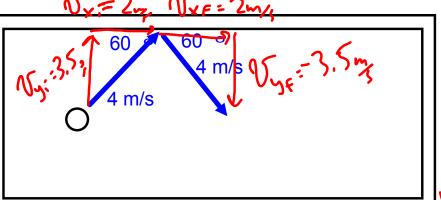
$$= \left[2(2)^2 - 3(2) \right] - \left[2(1)^2 - 3(1) \right]$$


$$\left(8 - 6 \right) - \left(2 - 3 \right)$$

$$2 - (-1)$$

$$\int = 3 N.5$$

Calculating Impulse: momentum


- a) Find the impulse delivered to the car and to the truck.
- b) If the collision lasted 0.05 s, what was the average force on each one during the collision?

Calculating Impulse: 2D

Find the impulse delivered to the 2 kg ball by the wall in ijk notation.

Nx = 2 m/4

$$\int_{X} = \Delta R_{x} = (2)(2-2) = 0$$

$$\int_{Y} = \Delta P_{y} = (2)(-3.5 - 3.5) = (2)(-7)$$

$$\int_{Y} = (0)(2 + (-14)) = (0)(1 + (-14)) = 0$$

$$\int_{Y} = (0)(2 + (-14)) = 0$$

$$\int_{Y} = (0)(2 + (-14)) = 0$$

Side note:

Momentum-Impulse vs Work-Kinetic Energy

$$J = \Delta p$$

$$J = \int F dt$$

$$\xi$$

$$\Delta p = m(v_f - v_i)$$

$$W_{total} = \Delta K$$

$$W = \int F dx$$

$$F \int x$$

$$\Delta K = \frac{1}{2} m (v_f^2 - v_i^2)$$